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Abstract
Recently relativistic quantum information has received considerable attention
due to its theoretical importance and practical application. In particular,
quantum entanglement in non-inertial reference frames has been studied for
scalar and Dirac fields. As a further step along this line, we here shall
investigate quantum entanglement of electromagnetic field in non-inertial
reference frames. In particular, the entanglement of the photon helicity
entangled state is extensively analysed. Interestingly, the resultant logarithmic
negativity and mutual information remain the same as those for inertial
reference frames, which is completely different from that previously obtained
for the particle number entangled state.

PACS numbers: 03.67.Mn, 03.65.Vf, 03.65.Yz

1. Introduction

Quantum entanglement is both the central concept and the major resource in quantum
information science such as quantum teleportation and quantum computation [1]. In recent
years, tremendous progress has been made in the research into quantum entanglement: not
only have remarkable results been obtained in this field, but also important techniques have
been applied to various circumstances [2].

In particular, considerable effort has been expended on the investigation of quantum
entanglement in the relativistic framework recently [3–5]. A key issue in this intriguing and
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Figure 1. The four disconnected patches in Minkowski spacetime with an inertial observer Alice
and a uniformly accelerated observer Bob constrained in R sector.

active research direction is whether quantum entanglement is observer dependent. It has
been shown that quantum entanglement remains invariant between inertial observers with
relative motion in flat spacetime although the entanglement between some degrees of freedom
can be transferred to others [6–9]. However, for scalar and Dirac fields, the degradation
of entanglement will occur from the perspective of a uniformly accelerated observer, which
essentially originates from the fact that the event horizon appears and Unruh effect results in
a loss of information for the non-inertial observer [10–13].

As a further step along this line, this paper will provide an analysis of quantum
entanglement of electromagnetic field in non-inertial reference frames. In particular, we
here choose the photon helicity entangled state 1√

2
(|↑〉A|↓〉B + |↓〉A|↑〉B) rather than the

particle number entangled state 1√
2
(|0〉A|0〉B + |1〉A|1〉B) in an inertial reference frame as

our main point for investigation of quantum entanglement in non-inertial reference frames,
where A and B represent an inertial observer Alice, and a uniformly accelerated observer
Bob respectively, as is illustrated in figure 1. It thus makes the present work acquire much
interest and significance: the former entangled state seems to be more popular in quantum
information science, but previous work only restricts within the latter setting [10–13]. In
addition, the result obtained here shows that although Bob is forced to trace over a causally
disconnected region of spacetime that he cannot access due to his acceleration, which also
leads his description of the helicity entangled state to take the form of a mixed state; the
corresponding logarithmic negativity and mutual information both remain invariant against
the acceleration of Bob. Therefore, our result is of remarkable novelty: it is completely
different from those obtained for the case of the particle number entangled state, where the
degradation of entanglement is dependent on the acceleration of observer, namely, the larger
the acceleration, the larger the degradation [10–13].

The paper is organized as follows. In the next section, we shall briefly review
the four disconnected sectors in Minkowski spacetime and the accelerated observers in
Rindler spacetime. In the subsequent section, introducing the two sets of expansion bases
for quantizing the electromagnetic field in Minkowski spacetime, we have developed the
relationship between the corresponding annihilation and creation operators in Minkowski
spacetime. In section 4, we shall analyse quantum entanglement of electromagnetic field in
non-inertial reference frames, especially for the photon helicity entangled state . Conclusions
and discussions are presented in the last section.
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System of natural units are adopted: h̄ = c = 1. In addition, the metric signature takes
(+,−,−,−), and the Lorentz gauge condition ∇aA

a = 0 is imposed onto the electromagnetic
potential in flat spacetime, where Maxwell equation reads

∇a∇aAb = 0. (1)

Moreover, the well-known inner product is reduced to

(A,A′) = i
∫

�

[∇aĀb)A′
b − Āb∇aA′b]εacde, (2)

which is gauge invariant and independent of the choice of Cauchy surface � [14, 15].

2. Accelerated observers in Minkowski spacetime

Start from Minkowski spacetime

ds2 = dt2 − dx2 − dy2 − dz2. (3)

As is shown in figure 1, we perform the coordinate transformations for the four disconnected
sectors in Minkowski spacetime, respectively, i.e.,

R

t = ρ sinh τ, x = ρ cosh τ,

ρ =
√

x2 − t2, τ = tanh−1

(
t

x

)
,

(4)

L

t = ρ sinh τ, x = ρ cosh τ,

ρ = −
√

x2 − t2, τ = tanh−1

(
t

x

)
,

(5)

F

t = ρ cosh τ, x = ρ sinh τ,

ρ =
√

t2 − x2, τ = tanh−1
(x

t

)
,

(6)

P

t = ρ cosh τ, x = ρ sinh τ

ρ = −
√

t2 − x2, τ = tanh−1
(x

t

)
.

(7)

In particular, the R(L) sector, viewed as a spacetime in its own right, is also called R(L) Rindler
spacetime, where the metric reads

ds2 = ρ2dτ 2 − dρ2 − dy2 − dz2, (8)

and the integral curves of boost Killing field
(

∂
∂τ

)a
correspond to the worldlines of accelerated

observers with proper time ρτ and acceleration 1
ρ

.

3. Quantum electromagnetic field in Minkowski spacetime

As is well known, the quantum fields can be expanded in terms of various bases, but the
corresponding vacua may be completely different. For the quantum electromagnetic field in
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Minkowski spacetime, we firstly choose the expansion basis as

Aµ(ω ∈ R,py ∈ R,pz ∈ R, s = ±1)

= 1

8π2p⊥
[(0, 0, pzφ,−pyφ) + s(∂xφ, ∂tφ, 0, 0)], (9)

where p⊥ =
√

p2
y + p2

z , and

φ =
∫ ∞

−∞
dλ e(−iωλ−ip⊥ cosh λt+ip⊥ sinh λx+ipyy+ipzz) (10)

satisfies Klein–Gordon equation in Minkowski spacetime, with ω a dimensionless parameter
[14, 16].

It is easy to check that Aµ(ω, py, pz, s) is the simultaneous eigensolution of boost,
transverse momentum, and helicity operators with the corresponding eigenvalues {ω,py, pz, s}
in Minkowski spacetime [15, 17]. Furthermore, it is orthonormal with respect to the inner
product (2), i.e.,

(A(ω, py, pz, s), A(ω′, p′
y, p

′
z, s

′)) = δ(ω − ω′)δ(py − p′
y)δ(pz − p′

z)δss ′ . (11)

Thus in terms of this basis, the quantum electromagnetic field can be expanded as

Âµ =
∫ ∞

−∞
dω

∫ ∞

−∞
dpy

∫ ∞

−∞
dpz

∑
s=±1

[c(ω, py, pz, s)Aµ(ω, py, pz, s)

+ c†(ω, py, pz, s)Āµ(ω, py, pz, s)], (12)

where c and c† are the corresponding annihilation and creation operators, respectively, adjoint
to each other, and satisfying the following commutation relations:

[c(ω, py, pz, s), c(ω
′, p′

y, p
′
z, s

′)] = 0, (13)

[c†(ω, py, pz, s), c
†(ω′, p′

y, p
′
z, s

′)] = 0, (14)

[c(ω, py, pz, s), c
†(ω′, p′

y, p
′
z, s

′)] = δ(ω − ω′)δ(py − p′
y)δ(pz − p′

z)δss ′ . (15)

Next we can also employ Unruh expansion basis for the quantum electromagnetic field,
i.e.,

Rµ(ω ∈ R+, py, pz, s) = 1√
2 sinh(πω)

(16)[
e( πω

2 )Aµ(ω, py, pz, s) − e(− πω
2 )Āµ(−ω,−py,−pz, s)

]
,

Lµ(ω ∈ R+, py, pz, s) = 1√
2 sinh(πω)

(17)[
e( πω

2 )Aµ(−ω,py, pz, s) − e(− πω
2 )Āµ(ω,−py,−pz, s)

]
,

where Rµ vanishes in the L sector, and Lµ vanishes in the R sector. It is noteworthy that
Rµ(ω ∈ R+, py, pz, s)(Lµ(ω ∈ R+, py, pz, s)) is the simultaneous eigenstate of energy,
transverse momentum, and helicity operators with eigenvalues of {aω, py, pz, s} detected by
an observer with uniform acceleration a in the R(L) Rindler spacetime [15, 17]. Moreover,
with respect to the inner product (2), Unruh basis is orthonormal, i.e.,

(R(ω, py, pz, s), R(ω′, p′
y, p

′
z, s

′)) = δ(ω − ω′)δ(py − p′
y)δ(pz − p′

z)δss ′ , (18)

(L(ω, py, pz, s), L(ω′, p′
y, p

′
z, s

′)) = δ(ω − ω′)δ(py − p′
y)δ(pz − p′

z)δss ′ , (19)
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(R(ω, py, pz, s), L(ω′, p′
y, p

′
z, s

′)) = 0. (20)

Whence the quantum electromagnetic field can be reformulated as

Âµ =
∫ ∞

0
dω

∫ ∞

−∞
dpy

∫ ∞

−∞
dpz

∑
s=±1

[r(ω, py, pz, s)Rµ(ω, py, pz, s)

+ r†(ω, py, pz, s)R̄µ(ω, py, pz, s) + l(ω, py, pz, s)Lµ(ω, py, pz, s)

+ l†(ω, py, pz, s)L̄µ(ω, py, pz, s)]. (21)

Here r and r† are the corresponding annihilation and creation operators for the R Rindler
spacetime; similarly, l and l† are the corresponding annihilation and creation operators for
the L Rindler spacetime. They satisfy the ordinary commutation relations as c and c† do.
Furthermore, they can be related to c and c† by Bogoliubov transformation, i.e.,

r(ω, py, pz, s) = 1√
2 sinh(πω)

(22)[
e( πω

2 )c(ω, py, pz, s) + e(− πω
2 )c†(−ω,−py,−pz, s)

]
,

l(ω, py, pz, s) = 1√
2 sinh(πω)

(23)[
e( πω

2 )c(−ω,py, pz, s) + e(− πω
2 )c†(ω,−py,−pz, s)

];
or vice versa

c(ω, py, pz, s) = 1√
2 sinh(πω)

(24)[
e( πω

2 )r(ω, py, pz, s) − e(− πω
2 )l†(ω,−py,−pz, s)

]
,

c(−ω,py, pz, s) = 1√
2 sinh(πω)

(25)[
e( πω

2 )l(ω, py, pz, s) − e(− πω
2 )r†(ω,−py,−pz, s)

]
.

Note that the vacuum state killed by the annihilation operator c is equivalent to the ordinary
Minkowski one [16]. Hence one obtains the expression for the ordinary Minkowski vacuum
in the mode Aµ(ω, py, pz, s) as a Rindler state, i.e.,

|0〉Mω,py,pz,s
=

√
2 sinh(πω)

e(πω)

∞∑
n=0

e(−nπω)

(26)
|n(ω, py, pz, s)〉R ⊗ |n(ω,−py,−pz, s)〉L,

where |n(ω, py, pz, s)〉R(|n(ω, py, pz, s)〉L) denotes the state with n particles in Unruh mode
Rµ(ω, py, pz, s)(Lµ(ω, py, pz, s)). Furthermore, we have

|1〉Mω,py,pz,s
= c†(ω, py, pz, s)|0〉M = [1 − e(−2πω)]

∞∑
n=0

e−nπω
√

n + 1

|(n + 1)(ω, py, pz, s)〉R ⊗ |n(ω,−py,−pz, s)〉L (27)∏
{ω′,p′

y ,p
′
z,s

′}�={ω,py,pz,s}
|0〉Mω′,p′

y ,p
′
z,s

′ .
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4. Entanglement for electromagnetic fields in non-inertial reference frames

In order to analyse quantum entanglement for electromagnetic field in non-inertial reference
frames, firstly following previous work [7, 10, 12, 13], we can also take into account the
particle number entangled state in the inertial reference frame associated with Alice, i.e.,

|ϕ〉 = 1√
2

(|0〉MA |0〉MB + |1〉MA |1〉MB
)
. (28)

It is easy to show that the helicity structure of photon has no influence in this case, and
the corresponding calculation goes straightforward, exactly the same as that for scalar
particle, which thus justifies modelling photon with scalar particle in investigation of
quantum entanglement in non-inertial reference frames for the particle number entangled state
[7, 10, 12].

We would next like to concentrate onto two photons’ maximally helicity entangled state
in the inertial reference frame, i.e.,

|ψ〉 = 1√
2

(|1〉Mω,py,pz,1A|1〉Mω,−py,−pz,−1B + |1〉Mω,py,pz,−1A|1〉Mω,−py,−pz,1B

)
, (29)

which also seems to be more popular than the particle number entangled state in quantum
information science. For later convenience, we shall rewrite (29) as

|ψ〉 = 1√
2

(|1〉M+↑A|1〉M−↓B + |1〉M+↓A|1〉M−↑B

)
. (30)

To describe this state from the viewpoint of the non-inertial observer Bob, firstly we shall
employ (27) to expand this state. Since Bob is causally disconnected from the L sector, we
must take trace over all of the L sector modes, which results in a mixed density matrix between
Alice and Bob, i.e.,

ρAB =
[
1 − e(− 2πE

a
)
]2

2

∞∑
n=0

e(− 2nπE
a

)(n + 1)
(|1〉M+↑A|n + 1〉R−↓B〈1|M+↑A〈n + 1|R−↓B

+ |1〉M+↑A|n + 1〉R−↓B〈1|M+↓A〈n + 1|R−↑B + |1〉M+↓A|n + 1〉R−↑B〈1|M+↑A〈n + 1|R−↓B

+ |1〉M+↓A|n + 1〉R−↑B〈1|M+↓A〈n + 1|R−↑B

)
, (31)

where a denotes Bob’s acceleration, and E = aω is the energy sensitive to Bob’s detector.
To determine whether this mixed state is entangled or not, we here use the partial transpose

criterion [18]. It states that if the partial transposed density matrix of a system has at least
one negative eigenvalue, it must be entangled, otherwise it has no distillable entanglement,
but may have other types of entanglement. After a straightforward calculation, the partial
transposed density matrix can be obtained as

ρT
AB =

[
1 − e(− 2πE

a
)
]2

2

∞∑
n=0

e(− 2nπE
a

)(n + 1)
(|1〉M+↑A|n + 1〉R−↓B〈1|M+↑A〈n + 1|R−↓B

+ |1〉M+↓A|n + 1〉R−↓B〈1|M+↑A〈n + 1|R−↑B + |1〉M+↑A|n + 1〉R−↑B〈1|M+↓A〈n + 1|R−↓B

+ |1〉M+↓A|n + 1〉R−↑B〈1|M+↓A〈n + 1|R−↑B

)
, (32)

whose eigenvalues are easy to be computed, specifically those belonging to the nth diagonal

block are [1−e[− 2πE
a )]2

2 e(− 2nπE
a

)(n + 1)(1, 1, 1,−1). Thus the state as seen by Bob will be
always entangled if only the acceleration is finite. However, quantification of the distillable
entanglement cannot be carried out in this case. Therefore, we only provide an upper
bound of the distillable entanglement by the logarithmic negativity [19]. It is defined as
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N(ρ) = log2 ‖ρT ‖1, where‖ ‖1 is the trace norm of a matrix. Whence the logarithmic
negativity is given by

N(ρAB) = log2

{
2
[
1 − e(− 2πE

a
)
]2

∞∑
n=0

e(− 2nπE
a

)(n + 1)

}
= 1, (33)

which is independent of the acceleration of Bob.
Further, we can also make an estimation of the total correlation in the state by employing

the mutual information, i.e., I (ρAB) = S(ρA)+S(ρB)−S(ρAB) where S(ρ) = −T r(ρ log2 ρ)

is the entropy of the matrix ρ. According to (31), the entropy of the joint state reads

S(ρAB) = −[
1 − e(− 2πE

a
)
]2

∞∑
n=0

e(− 2nπE
a

)(n + 1)

(34)
log2

{[
1 − e(− 2πE

a
)
]2

e(− 2nπE
a

)(n + 1)
}
.

Tracing over Alice’s states yields Bob’s density matrix as

ρB =
[
1 − e(− 2πE

a
)
]2

2

∞∑
n=0

e(− 2nπE
a

)(n + 1)

(35)(|n + 1〉R−↓B〈n + 1|R−↓B + |n + 1〉R−↑B〈n + 1|R−↑B

)
,

whose entropy is

S(ρB) = 1 − [
1 − e(− 2πE

a
)
]2

∞∑
n=0

e(− 2nπE
a

)(n + 1)

log2

{[
1 − e(− 2πE

a
)
]2

e(− 2nπE
a

)(n + 1)
}
. (36)

Similarly, tracing over Bob’s states, we obtain Alice’s density matrix as

ρA = 1
2

(|1〉M+↑A〈1|M+↑A + |1〉M+↓A〈1|M+↓A

)
, (37)

which has an entropy S(ρA) = 1. As a result, the mutual information is I (ρAB) = 2, which
is the same for any uniformly accelerated observer, no matter how much the magnitude of
acceleration is.

Therefore, as seen by Bob, the helicity entanglement in non-inertial reference frames
shows a remarkably interesting behaviour, which is obviously different from the case for the
particle number entanglement. In particular, the calculable logarithmic negativity and mutual
information both remain constant for the photon helicity entangled state, which is in strong
contrast to the particle number entangled state, where they both degrade with the increase of
acceleration. All of this seems to imply that the photon helicity entangled state is more robust
against the perturbation of acceleration or gravitation than the particle number entangled state,
thus can be used as a more effective resource for performing some quantum information
processing technology.

5. Conclusions and discussions

In this paper, we have attempted to provide an analysis of quantum entanglement of
electromagnetic field in non-inertial reference frames. In particular, we find that the maximally
helicity entangled state is a stable state under acceleration in the sense of its logarithmic
negativity and mutual information, which is obviously a novel result, completely different
from the case for the particle number entangled state.
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As is mentioned in the beginning, the major difference between our work and previous
ones concerning quantum entanglement in non-inertial frames is that we have considered the
helicity entanglement while previous ones only focus on the entanglement in particle number.
The helicity structure is special to photons, which is a completely new trait that cannot be
presented in the case of scalar particles. It is tempting to say that the entanglement of the
discrete degrees of freedom is generally different from the particle number entanglement.
Especially, the entangled state seems more immune to the destruction of the acceleration or
gravitation in discrete degrees of freedom than particle number. To confirm this conjecture, the
spin entanglement of Dirac field in non-inertial reference frames is a necessary and important
task worthy of further investigation. Since Dirac particle is constrained by Pauli exclusion
principle, it is a qubit–qubit system and the evaluation of the corresponding entanglement
is much easier, especially the entanglement of formation can be explicitly calculated [20].
Such a detailed analysis of the spin entanglement in non-inertial reference frames and related
problems is expected to be reported elsewhere.
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